Im Süden von Texas errichtete SpaceX ein Startgelände und eine Fabrik, in der seit Ende 2019 Starship-Prototypen gefertigt werden. In den Jahren 2020 und 2021 fanden dort mehrere atmosphärische Testflüge der oberen Stufe statt. Die ersten beiden Starts von Prototypen der kompletten Rakete im April und November 2023 endeten jeweils nach einigen Minuten mit einer Zerstörung beider Stufen.
Für die tragende Struktur und die Tanks sah die ursprüngliche Planung kohlenstofffaserverstärkten Kunststoff (CFK) vor. Ab Ende 2018 wurde zu einer Edelstahlbauweise gewechselt. Die Konstruktion ist einwandig ausgeführt, das heißt, die Tankhülle ist gleichzeitig die Außenhülle der Rakete, zudem sind Sauerstoff- und Methantank nur mit einem einfachen Blechschott getrennt.
Die geplante Triebwerksauslegung der Oberstufe – des Starship wechselte mehrmals. Mit Beginn der Fertigung von flugfähigen Prototypen legte sich SpaceX auf die Verwendung von sechs Raptor-Triebwerken fest, drei davon identisch mit denen der Erststufe und drei vakuumoptimierte Motoren – kurz RVac genannt – mit wesentlich größerer Düse. Wie bei der Super Heavy dient eine innere Gruppe von einzeln schwenkbaren Triebwerken, um die herum die starr befestigten übrigen Motoren angeordnet werden, zur Schubvektorsteuerung. Lageveränderungen während des Raumflugs sollen mit kleineren Steuertriebwerken erfolgen, die aus separaten Hochdrucktanks ebenfalls mit Flüssigsauerstoff und Methan versorgt werden. Die Triebwerke des Starship zünden noch vor der Stufentrennung, um den Geschwindigkeitsverlust während einer antriebslosen Flugphase zu vermeiden und so höhere Nutzlasten zu ermöglichen (sogenanntes hot staging, „heiße Stufentrennung“). Oben auf der Erststufe ist dazu ein Gitterring montiert, durch den die Starship-Triebwerksabgase entweichen können.
Die Außenhülle entwickelte sich wie bei der Super Heavy von einem CFK-Entwurf zu einer Konstruktion aus zusammengeschweißten Blechen aus rostfreiem Chromnickelstahl (Typ 304L). Dieses Material ist bei sehr hohen und sehr niedrigen Temperaturen wesentlich stabiler als CFK und kann den Infrarotanteil der Sonnenstrahlung im All zum größten Teil reflektieren. Zudem ist Stahl weitaus preiswerter und einfacher als CFK zu verarbeiten. Anfangs wurden vier Millimeter dicke Bleche verwendet, doch das sollte im späteren Verlauf auf 3 Millimeter verringert werden, um Gewicht einzusparen. Die Unterseite des Starship ist mit keramischen Hitzeschutzkacheln versehen.
Im Gegensatz zu herkömmlichen Raketenkonstruktionen ist die Oberstufe des Starship-Systems fest mit der Nutzlastsektion verbaut, sodass beide eine Einheit bilden. Der Durchmesser beträgt 9 Meter, und als maximale Nutzlastmasse sind über 100 Tonnen geplant. Eine volle Nutzung des Treibstofftanks und der Transportkapazität für interplanetare Flüge soll möglich werden, indem weitere Raumschiffe (Tanker) den Treibstoff in Portionen in den Erdorbit transportieren und dort das Raumschiff etwa für einen Flug zum Mars betanken.
Das Starship verfügt über vier seitliche, flügelähnliche Brems- und Steuerflächen für Landungen auf Planeten mit Atmosphäre. Zwei kleine sind ähnlich Canards am vorderen (beim Start oberen) Ende des Raumschiffs angebracht, zwei größere am hinteren Ende. Diese Klappen wirken nach demselben Prinzip wie die Arme und Beine eines Fallschirmspringers: Während das Raumschiff mit dem „Bauch“ (der mit Hitzeschutz versehenen Seite) voran nach unten fällt, werden die Klappen unabhängig voneinander bewegt, um es in der Waagerechten bzw. dem gewünschten Anstellwinkel zu halten. In der Endphase des Landeanflugs dreht sich das Schiff um 90 Grad um die Querachse, fliegt rückwärts und landet wie die Falcon 9 mit Triebwerksbremsung, aber in Fangarmen des Startturms anstatt auf Landebeinen. Nur bei den ersten Testflügen von Prototypen wurden Landebeine genutzt. Bei der Rückkehr von interplanetaren Flügen soll das Starship mit Atmosphärenbremsung landen, das heißt, vor dem Landen mehrmals in die Erdatmosphäre eintauchen, um schrittweise die Bewegungsenergie abzubauen ohne zu überhitzen.
Die Oberstufe ist in mindestens sechs verschiedenen Ausführungen geplant: Als Starlink-Frachter, als Frachter für große Nutzlasten, als Tanker, als orbitales Treibstoffdepot, als Raumschiff für Personen- und Frachttransporte und als Mondlandefähre.
Um erneute Schäden am Startplatz zu vermeiden, versah SpaceX diesen mit einer Bodenplatte aus Stahl und mit einem Wasserüberflutungssystem, wie es bei anderen Raketenstartplätzen ohne Flammenschacht üblich ist. Durch die Prüfung der 57 „Korrekturmaßnahmen“ und die nötige Umweltverträglichkeitsprüfung des Überflutungssystems verzögerte sich die Genehmigung des nächsten Testflugs um etwa zwei Monate.
Der zweite Testflug des Gesamtsystems („Intergrated Flight Test 2“, IFT-2) fand am 18. November 2023 statt. Geplant war eine Wiederholung von IFT-1 mit teilweiser Erdumrundung und Wasserung des Starship bei Hawaii. Zudem sollte erstmals eine Stufentrennung im Hot-Staging-Verfahren erprobt werden, bei dem die Triebwerke der oberen Raketenstufe bereits vor der Trennung zünden. Im Gegensatz zum ersten Startversuch funktionierten diesmal alle 33 Super-Heavy-Triebwerke.
Das Hot Staging verlief planmäßig und der Booster kehrte um, um im Golf von Mexiko zu wassern, brach jedoch einige Sekunden später auseinander. Das Starship beschleunigte weiter, auch nachdem es die geplante Flughöhe von ungefähr 150 Kilometern erreicht hatte. Nach etwa acht Flugminuten und bei einer Geschwindigkeit von rund 24.000 km/h erkannte der Bordcomputer des Raumfahrzeugs eine Fehlfunktion und löste die Sprengladungen zur Selbstzerstörung aus. Zum besseren Schutz des Boosters vor den Triebwerksabgasen des Starship erwog SpaceX bereits vor dem Start von IFT-2 den Einbau eines abwerfbaren Hitzeschildes, der bei diesem Testflug aber noch nicht vorhanden war.